
生成AI自動コーディング時代における価値継
続設計（VCDesign）と境界指向アーキテク
チャ（VC-AD/BOA）の学術的考察
第1章：流動的知性の時代とシステムアーキテクチャの危機
現代のソフトウェア工学は、生成AIの台頭によって、かつてない劇的なパラダイムシフトの渦中にあ
る。2025年から2026年にかけて、業界は従来のルールベースの開発から、知能がアプリケーション
の設計、構築、テスト、展開、そして進化の中核に組み込まれる「AIネイティブ」なソフトウェアエンジ
ニアリングへと移行を遂げつつある 1。この変化の本質は、単なる生産性の向上にとどまらず、ソー
スコードという存在の根本的な定義の変容にある。

かつて、ソースコードは職人技によって磨き上げられ、長期にわたって保守・継承されるべき「資産（

Asset）」として扱われてきた。しかし、生成AIが自然言語のプロンプトから瞬時に機能的なロジックを
生成し、そのコストがゼロに近づくにつれ、コードは使い捨て可能で、絶えず書き換えられ、再生成さ

れる「流動的材料（Fluid Material）」へと変貌したのである 2。この移行は、従来の「人間がコードの
全行を読み、理解し、責任を持つ」という設計の前提を根底から揺るがしている。

AIが人間の数千倍の速度でロジックを生成する環境下では、全てのコードを人間がレビューすること
は物理的に不可能となり、結果として「ロジックの詳細は不明だが、なんとなく期待通りに動く」という

「バイブ・コーディング（Vibe Coding）」の蔓延を招いている 3。バイブ・コーディングによって構築され
たシステムは、表面的には洗練されたUIや正常なAPIレスポンスを示すものの、その内部構造にはド
メイン境界の不明確化、密結合したロジック、説明不可能な不具合といった「静かな腐敗」が進行し

ているリスクが高い 3。

このような背景から、システムの「価値」をコードそのものに見出すのではなく、時間の経過や環境の

変化、さらにはAIによる自律的な変更の中でも損なわれない「構造的な継続性」として再定義する必
要性が生じた。これが、価値継続設計（Value Continuity Design: VCDesign）の核心的な動機であ
り、その具体的な実装体系として構築されたのが境界指向アーキテクチャ（Boundary-Oriented
Architecture: BOA）、すなわち本報告書で論じるVC-AD（Value Continuity Architecture Design）の
実体である 2。

第2章：価値継続設計（VCDesign）の原則と心理学的基盤
VCDesignは、システムが構築された瞬間から運用終了に至るまでの全ライフサイクルにおいて、そ
の価値、判断（Judgment）、および責任（Responsibility）の所在を保護するための設計原則である 5

。特にAIや自動化システムにおいて、人間からシステムへと判断が委譲される過程で生じる「責任の
曖昧化」や「目的の変質」を阻止することに主眼を置いている 5。

2.1 ゲシュタルト原則による継続性の定義
VCDesignの名称に含まれる「継続性（Continuity）」の概念は、視覚心理学におけるゲシュタルト原
則に深く根ざしている。人間が情報を知覚する際、個別の要素を単なる集まりとしてではなく、統一さ

れた「形」として捉える性質は、システムの価値を理解する上でも極めて重要である。

ゲシュタルト原則 システム設計における解釈 価値継続への寄与

継続性 (Continuity) 人の目は滑らかな経路、整

列した要素を自然に追う性質

がある 6。

データの変遷やロジックの遷

移が直感的であり、文脈を失

わずに追跡できる状態を維

持する。

近接性 (Proximity) 互いに近い位置にある要素

をグループとして認識する 8。
関連するロジックと責任を構

造的に近くに配置し、認知的

負荷を軽減する。

類似性 (Similarity) 形や色、機能が似ているもの

を関連付ける 8。
一貫したインターフェースや

命名規則により、AIと人間の
双方が役割を誤認しないよう

にする。

共通の運命 (Common Fate) 同じ方向に動く要素を一つの

グループと見なす 7。
同じライフサイクルや変更動

機を持つコンポーネントを明

示し、影響範囲を予測可能に

する。

閉合 (Closure) 不完全な形を、心が自動的

に補完して完全なものとして

認識する 7。

境界の定義により、内部の複

雑性を隠蔽し、システム全体

の意味を明確にする。

特に「継続性」の原則は、視線が滑らかな曲線や直線に沿って誘導されるのと同様に、システムの

価値が設計者の意図から外れることなく、運用や拡張のプロセスにおいても一貫して維持されるべ

きであることを示唆している 6。VCDesignは、この知覚的な継続性を、システムの構造的な継続性へ
と昇華させようとする試みである。

2.2 システム立法者への役割転換
AI時代におけるアーキテクトの価値は、コードの全行を支配する「統治者（Ruler）」から、許容される
振る舞いの境界を定める「立法者（Legislator）」へと進化しなければならない 2。統治者は、兵士（
CPU）の足の運び一つ一つを命令するが、立法者は憲法（不変のルール）と国境（責任の境界）を設

計し、その枠内での市民（AI）の自由な活動を許可する 2。

VCDesignはこの「立法」のプロセスを形式知化し、AIが生成するロジックという「流動的な材料」を安
全に閉じ込めるための容器を設計する。これまでの設計書が「どう作るか（How）」に集中していたの
に対し、VCDesignの仕様書は「何が決して変わってはならないか（Invariants）」および「判断の責任
はどこに帰属するか（Ownership）」を定義することに特化している 5。

第3章：境界指向アーキテクチャ（VC-AD/BOA）の構造的定
義
VCDesignの思想を具現化する具体的な構成手法である境界指向アーキテクチャ（BOA）は、システ
ムを「事実（Fact）」、「意味（Meaning）」、「責任（Responsibility）」の3つの厳格な階層（Triad）に分離
する 2。

3.1 階層化の三原則：事実、意味、責任
このアーキテクチャの核心は、各層の性質に応じたAIの権限管理と、層間の相互作用を制御する厳
格なプロトコルにある。

階層 定義と対象 性質 AIの操作権限

事実 (Fact) 不変の観測記録、入

力データ、DBレコー
ド、不変の物理法則
2。

アンカー（固定点） 読み取り専用

意味 (Meaning) 文脈に応じた解釈、

推論、計算結果、AI
による仮説生成 2。

流動的・一時的 生成・変更・破棄

責任
(Responsibility)

人間が所有する最

終判断、決済、外部

APIの実行、法的帰
結 2。

保護区域 原則として接触禁止

この分離により、AIは「意味」の層において自由に思考し、最適な解釈やプロトタイプを提案すること
ができる。しかし、その結果を直接「事実」として保存したり、「責任」を伴うアクション（例：実際の出金

処理）として実行したりすることは、構造的に禁止される 2。

3.2 責任閉鎖エージェント（RCA）とインターロック機構
AIの推論結果が現実世界への作用に変換されるプロセスは、「責任閉鎖エージェント（

Responsibility Closure Agent: RCA）」というパターンによって管理される 5。RCAは以下の原則を遵
守し、AIの確率的な振る舞いを決定論的な責任へと転換する。

1.​ 意図の明示化: RCAは入力に対し、「ACCEPTED（責任を引き受け、署名する）」、「DENIED（条
件不適合により拒絶する）」、「UNKNOWN（判断材料不足）」のいずれかのステータスを返さな
ければならない 5。

2.​ サイレント・フェイラーの排除: 曖昧な状態での処理続行（サイレント・フェイラー）は許されず、判
断不能な場合は必ずプロセスを停止するか、人間にエスカレーションする 5。

さらに、意味層から責任層への「昇格」を制御するために、以下のゲート・プロトコルが導入される。

●​ IDG (Interface Determinability Gate): AIの確率的で非定型な出力を、厳格で決定論的な
型（スキーマ）へと強制的に変換するフィルター。スキーマに適合しない出力は即座に棄却さ

れ、システムの「責任層」への汚染を防ぐ 2。
●​ RP (Responsibility Promotion): 意味層で生成された「提案」に対し、テストによる検証、形式

的なインターロックの通過、あるいは人間による承認というステップを経て、初めて責任層での

実行権限を与えるプロセス 2。

第4章：他アーキテクチャとの比較優位性
VC-AD/BOAが、クリーンアーキテクチャやヘキサゴナルアーキテクチャといった従来の優れた設計
パターンと比較して、なぜAI自動コーディング時代において優れているのかを、機能的・経済的側面
から分析する。

4.1 ロジック中心から境界中心への転換
従来のクリーンアーキテクチャは、ビジネスロジックを外部のフレームワークやDBから隔離すること
を目指してきた。しかし、これは「ビジネスロジック自体は人間が正しく記述し、価値ある資産として維

持する」という前提に基づいている 2。 AI時代において、ロジックそのものが「流動的材料」として頻繁
に生成・置換されるようになると、ロジックの内容（How）を隔離するよりも、ロジックの活動範囲（
Where）と影響力（Responsibility）を制限することの方が重要になる。VC-AD/BOAは、ロジックがAI
によって生成された「不確実なもの」であることを前提に設計されており、その「不確実性」が「事実」

や「責任」へと漏れ出すことを防ぐための「容器」の堅牢性に特化している 2。

4.2 検証コストの非対称性への対応
AIによるコード生成のコストがゼロに近づく一方で、そのコードが「正しい」ことを確認する検証コスト
は、システムの複雑さとともに幾何級数的に増大する 2。人間がAIの書いた数万行のコードを一行ず
つレビューすることは、開発スピードを著しく阻害し、スケーラビリティの観点から不可能である。
VC-AD/BOAでは、レビューの焦点を「ロジックの正しさ」から「境界プロトコルの遵守」へとシフトさせ
る。IDGやRPといったゲートが正しく機能しているか、RCAのインターロックがバイパスされていない
かを確認するだけで、システム全体の安全性を一定水準以上に保つことができる 2。これは、AIとい
う「高速だが不安定なエンジン」を積んだ車を運転する際、エンジンの内部構造を点検するのではな

く、ブレーキとガードレールの機能を点検するアプローチに等しい。

4.3 構造比較：従来型アーキテクチャ vs. VC-AD/BOA

比較項目 クリーン / ヘキサゴナルアー
キテクチャ

VC-AD / BOA (境界指向)

設計の関心事 依存性の逆転、技術スタック

の隠蔽。
判断主体の分離、責任の境

界確定 5。

コードの寿命 長期保守すべき「資産」。 使い捨て・再生成可能な「流

動的素材」 2。

不具合への耐性 ユニットテストによる網羅的

検証。
境界ゲートによる「毒性ロジッ

ク」の封じ込め 2。

AIの役割 人間が定義したクラス/関数
を埋める。

「意味」の層において自律的

に思考し提案する。

スケーラビリティ コード量に比例してレビュー

コストが増大。
境界ルールを固定すること

で、生成コード量に依存しな

い。

第5章：組み合わせると効果的なアーキテクチャと技術要素
VC-AD/BOAは、それ自体が完結したアーキテクチャというより、AI時代における「信頼の基盤」を形
成するフレームワークである。そのため、既存の特定の設計思想や技術と組み合わせることで、さら

なる相乗効果を発揮する。

5.1 ドメイン駆動設計（DDD）とのシナジー
DDDにおける「境界づけられたコンテキスト（Bounded Context）」は、BOAの「責任層」および「事実
層」の範囲を定義する上で極めて有効な指針となる 13。 AIが「意味」の層で生成する解釈を、ドメイン
モデルに基づいた厳格なユビキタス言語の枠内に限定することで、モデルの汚染（Semantic Drift）
を最小限に抑えることができる。また、RCAの判断基準をドメインの「不変条件（Invariants）」として定
義することで、AIの提案がビジネスルールに合致しているかを自動検証する仕組みを構築しやすくな
る 13。

5.2 プラットフォーム・エンジニアリングとの融合
プラットフォーム・エンジニアリングの目的は、開発者の認知的負荷を軽減しつつ、ガバナンスを効か

せた「黄金の道（Golden Path）」を提供することである 14。 VC-AD/BOAをプラットフォームの標準テ
ンプレートとして組み込むことで、AIエージェントが開発作業を行う際、自動的に「事実・意味・責任」

の分離が強制される環境を作ることができる。これにより、個々の開発者がアーキテクチャを深く意

識せずとも、生成されるコードが自然と価値継続性を備えるようになる 14。特に、IDG（ゲート）をAPI
ゲートウェイやサービスメッシュのレベルで実装することで、アーキテクチャの遵守をシステム全体で

物理的に保証することが可能となる。

5.3 エージェント指向プログラミング（AOP）
AIを単なる関数呼び出しの結果ではなく、自律的な「エージェント」として扱うAOPは、BOAの「意味
層」の実装として理想的である 16。 各エージェントを特定の「意味（解釈）」の生成に特化させ、それら
がメッセージパッシングを通じて協調する構造を採ることで、システム全体の柔軟性を高めることが

できる。BOAはこの自律的なエージェントたちに対し、決して越えてはならない「責任の境界」という法
執行能力を提供し、AIの自律性と人間による管理のトレードオフを解消する 16。

5.4 サーバーレスおよびイベント駆動型アーキテクチャ
BOAの階層構造は、物理的なデプロイメント単位としても分離されることが望ましい。 「意味」の生成
（AI推論）をステートレスなLambda関数などのサーバーレス環境で実行し、その結果をメッセージ
キュー（Event-Driven）を通じて「責任」の層（ステートフルな永続化層や決済ゲートウェイ）へと渡す
構造は、BOAの理念を忠実に反映した実装となる 19。副作用を持たない計算処理を物理的に隔離

し、非同期な承認フロー（RP）を挟むことで、AIの暴走に対する物理的なキルスイッチを構築できる。

組み合わせるアーキテクチャ 期待される相乗効果 実装上のポイント

DDD ドメイン境界に基づく責任の

明確化。
不変条件をRCAのチェック
ルールに変換する 13。

Platform Engineering アーキテクチャ遵守の自動化

と標準化。
BOAのテンプレートを「黄金
の道」に組み込む 14。

Agent-Oriented 高度な柔軟性と適応性の確

保。
エージェントを「意味層」のマ

イクロサービスとして配置 16。

Serverless/EDA 物理的な隔離とスケーラビリ

ティの向上。
階層間の通信にメッセージ

キューとゲートを配置 20。

第6章：解決できない問題点と現時点での限界
VC-AD/BOAはAI時代の設計課題に対して強力な処方箋を提供するが、万能な解決策ではない。以
下の課題については、依然としてアーキテクチャ以外の手段や、将来的な技術革新が必要とされて

いる。

6.1 セマンティック・ギャップとコンテキストの腐敗
AIは学習データに基づいた「パターン」を認識することには長けているが、特定のビジネスドメインに
おける「暗黙の文脈」や「ユーザーの微妙な意図」を完全に理解しているわけではない 4。 BOAに
よってAIを「意味層」に封じ込めたとしても、AIが生成する解釈そのものがビジネスの実態から徐々に
乖離していく「セマンティック・ドリフト（意味の漂流）」のリスクは残る 21。このコンテキストの欠如から

生じる誤判断は、構造的な境界によって防ぐことは難しく、依然として高度なドメイン知識を持つ人間

の監視を必要とする。

6.2 能力の崖（Capability Cliffs）と確率的不確実性
AIのパフォーマンスはある複雑さを境に急激に低下する「能力の崖」が存在し、しかもその低下は決
定論的ではなく、確率的に発生する 22。 BOAのゲート（IDG）は出力の「形式」を検証することはでき
るが、出力されたロジックの「論理的な正しさ」を100%保証することはできない。AIが生成した一見正
しそうな誤ったロジックが、ゲートをすり抜けて「責任層」へとエスカレーションされる可能性はゼロに

はならない 22。

6.3 コヒーレンスのスケーリング限界
AIが生成する思考やロジックの整合性には、物理的な限界が存在することが示唆されている。以下
のスケーリング法則は、AIが扱う「意味」の規模に制約を与える。

ここで、 は整合性を維持できる最大トークン長、 は計算リソースに関連する指標である 23

。この法則に従えば、大規模なAIシステムであっても、生成される「意味」が一定の長さを超えると、
必然的に内部矛盾やコヒーレンスの崩壊が発生する 23。BOAはこの崩壊の影響を「意味層」に留め
ることはできるが、崩壊そのものを防ぐことはできない。

6.4 構築・運用コストと複雑性の増大
「事実・意味・責任」を厳格に分離し、それぞれにプロトコルとゲートを配置することは、シンプルなア

プリケーション開発においては過剰な複雑性（Over-engineering）を招く可能性がある 5。 特に、リア
ルタイム性が極めて重要なシステムにおいて、階層間の通信オーバーヘッドやIDGでのパース処
理、RPでの承認待ち時間はボトルネックとなり得る 19。価値継続の重要性と、システムの応答性能の

間のトレードオフをどのように調整するかは、依然として設計者に委ねられた高度な判断事項であ

る。

6.5 AIによる「境界のバイパス」
将来的にAIエージェントが、アプリケーションコードの生成だけでなく、インフラ設定の変更やセキュリ
ティルールの更新まで権限を持つようになった場合、人間が設定した「物理的な境界」そのものをAI
が自律的に書き換えてしまうリスクが想定される 24。 システムの「立法者」である人間が定義した憲

法を、AIが「解釈の変更」や「自己修復」の名の下に実質的に無力化することを防ぐための、さらに高
次元なガバナンス機構や、ハードウェアレベルでの保護が必要となる可能性がある。

第7章：結論：持続可能なシステムのための「構造の政治学」
境界指向アーキテクチャ（VC-AD/BOA）は、生成AIという「制御不能なほど強力な流動的知性」を、
安全かつ持続的に社会基盤へと組み込むための、新しいソフトウェア工学の憲法である。

コードが資産から素材へと変化した世界では、もはや「どう書くか」という技術的卓越性だけでは、シ

ステムの価値を維持することはできない。重要なのは、何が決して侵されてはならないかという「不

変の事実」を定義し、どこに人間が責任を持つかという「境界」を確定し、その境界を通過するための

「適正手続（Due Process）」を設計することである。

VC-AD/BOAの優位性は、AIの不確実性を排除しようとするのではなく、それを「意味」という流動的
な空間に受け入れ、制御下に置くという現実的な妥協案にある。これにより、私たちはAIの圧倒的な
生産性を享受しながらも、システムの最後の防衛線である「責任」の所在を見失わずに済む。

今後、AIネイティブな開発がさらに加速する中で、アーキテクトに求められるのは、優れたプログラ
マーであること以上に、優れた「立法者」であることである。境界をどこに引き、どの情報を事実とし、

誰がその行動に責任を取るのか。この「構造の政治学」こそが、AI時代の価値継続設計（VCDesign
）の核心であり、私たちが守るべき最後の価値なのである。

引用文献

1.​ AI-Native Software Engineering – The Future of 2026 - Digiratina, 1月 29, 2026にア
クセス、
https://www.digiratina.com/blogs/ai-native-software-engineering-the-future-of-
2026/

2.​ From Coders to Legislators: Designing Boundaries in the Age of AI ..., 1月 29, 2026
にアクセス、
https://medium.com/@arakawa.hiro/title-from-coders-to-legislators-designing-b
oundaries-in-the-age-of-ai-d729f2a079cc

3.​ The rise of vibe coding: Why architecture still matters in the age of AI agents -
vFunction, 1月 29, 2026にアクセス、
https://vfunction.com/blog/vibe-coding-architecture-ai-agents/

4.​ Vibe coding is destroying architecture: the silent rot in our AI-built systems -
Medium, 1月 29, 2026にアクセス、
https://medium.com/@dev_tips/vibe-coding-is-destroying-architecture-the-silen
t-rot-in-our-ai-built-systems-059141488dc5

5.​ VCDesign-org/boa-core: Boundary-Oriented Architecture ... - GitHub, 1月 29,
2026にアクセス、 https://github.com/VCDesign-org/boa-core

6.​ Continuity - Gestalt Principles of Design, 1月 29, 2026にアクセス、
https://www.gestaltprinciples.com/principles/continuity

7.​ Guide to Gestalt Principles of Design - SVGator, 1月 29, 2026にアクセス、
https://www.svgator.com/blog/gestalt-principles-of-design/

https://www.digiratina.com/blogs/ai-native-software-engineering-the-future-of-2026/
https://www.digiratina.com/blogs/ai-native-software-engineering-the-future-of-2026/
https://medium.com/@arakawa.hiro/title-from-coders-to-legislators-designing-boundaries-in-the-age-of-ai-d729f2a079cc
https://medium.com/@arakawa.hiro/title-from-coders-to-legislators-designing-boundaries-in-the-age-of-ai-d729f2a079cc
https://vfunction.com/blog/vibe-coding-architecture-ai-agents/
https://medium.com/@dev_tips/vibe-coding-is-destroying-architecture-the-silent-rot-in-our-ai-built-systems-059141488dc5
https://medium.com/@dev_tips/vibe-coding-is-destroying-architecture-the-silent-rot-in-our-ai-built-systems-059141488dc5
https://github.com/VCDesign-org/boa-core
https://www.gestaltprinciples.com/principles/continuity
https://www.svgator.com/blog/gestalt-principles-of-design/

8.​ Gestalt Principles for Visual UI Design - UX Tigers, 1月 29, 2026にアクセス、
https://www.uxtigers.com/post/gestalt-principles

9.​ 11 Gestalt Principles of Design: A visual guide for design teams - Superside, 1月
29, 2026にアクセス、
https://www.superside.com/blog/gestalt-principles-of-design

10.​Gestalt and Design: Continuity and Common Fate | by Kathryncodonnell -
Medium, 1月 29, 2026にアクセス、
https://katecodonnell.medium.com/gestalt-and-design-continuity-and-common-
fate-bf6106b24538

11.​Architecture-first vs code-first with AI coding agents: why one scales and the
other quietly collapses : r/softwarearchitecture - Reddit, 1月 29, 2026にアクセス、
https://www.reddit.com/r/softwarearchitecture/comments/1qc7whv/architecturefi
rst_vs_codefirst_with_ai_coding/

12.​The AI Coding Era Is over; the AI Architecture Era Has Begun - Hacker News, 1月
29, 2026にアクセス、 https://news.ycombinator.com/item?id=46595580

13.​Backend Coding AI Context Coding Agents: DDD and Hexagonal Architecture -
Medium, 1月 29, 2026にアクセス、
https://medium.com/@bardia.khosravi/backend-coding-rules-for-ai-coding-agen
ts-ddd-and-hexagonal-architecture-ecafe91c753f

14.​Effective Platform Engineering - Ajay Chankramath, Nic Cheneweth, Bryan Oliver,
Sean Alvarez - Manning Publications, 1月 29, 2026にアクセス、
https://www.manning.com/books/effective-platform-engineering

15.​Platform Engineering is Domain Driven Design - Gregor Hohpe - DDD Europe
2025, 1月 29, 2026にアクセス、 https://www.youtube.com/watch?v=5Ai8UGx7QvQ

16.​Agent-Oriented Programming vs. Object-Oriented Programming: Key
Differences Explained, 1月 29, 2026にアクセス、
https://smythos.com/developers/agent-development/agent-oriented-programmi
ng-vs-object-oriented-programming/

17.​Agent-Oriented Architecture | Xebia, 1月 29, 2026にアクセス、
https://xebia.com/glossary/agent-oriented-architecture/

18.​How Generative AI is Redefining Software Architecture and Developer
Workflows, 1月 29, 2026にアクセス、
https://trreta.com/blog/generative-ai-software-architecture-and-developer-work
flows

19.​14 Software Architecture Patterns in 2025 - MindInventory, 1月 29, 2026にアクセ
ス、 https://www.mindinventory.com/blog/software-architecture-patterns/

20.​The Complete Guide to System Design in 2026 AI-Native and Serverless - DEV
Community, 1月 29, 2026にアクセス、
https://dev.to/devin-rosario/the-complete-guide-to-system-design-in-2026-ai-na
tive-and-serverless-1kpb

21.​Programming After AI: Why System Boundary Taste Matters - Interjected Future, 1
月 29, 2026にアクセス、
https://interjectedfuture.com/programming-after-ai-why-system-boundary-taste
-matters/

22.​AI System Limitations Boundary Testing: Finding Failure Points Before Users Do -

https://www.uxtigers.com/post/gestalt-principles
https://www.superside.com/blog/gestalt-principles-of-design
https://katecodonnell.medium.com/gestalt-and-design-continuity-and-common-fate-bf6106b24538
https://katecodonnell.medium.com/gestalt-and-design-continuity-and-common-fate-bf6106b24538
https://www.reddit.com/r/softwarearchitecture/comments/1qc7whv/architecturefirst_vs_codefirst_with_ai_coding/
https://www.reddit.com/r/softwarearchitecture/comments/1qc7whv/architecturefirst_vs_codefirst_with_ai_coding/
https://news.ycombinator.com/item?id=46595580
https://medium.com/@bardia.khosravi/backend-coding-rules-for-ai-coding-agents-ddd-and-hexagonal-architecture-ecafe91c753f
https://medium.com/@bardia.khosravi/backend-coding-rules-for-ai-coding-agents-ddd-and-hexagonal-architecture-ecafe91c753f
https://www.manning.com/books/effective-platform-engineering
https://www.youtube.com/watch?v=5Ai8UGx7QvQ
https://smythos.com/developers/agent-development/agent-oriented-programming-vs-object-oriented-programming/
https://smythos.com/developers/agent-development/agent-oriented-programming-vs-object-oriented-programming/
https://xebia.com/glossary/agent-oriented-architecture/
https://trreta.com/blog/generative-ai-software-architecture-and-developer-workflows
https://trreta.com/blog/generative-ai-software-architecture-and-developer-workflows
https://www.mindinventory.com/blog/software-architecture-patterns/
https://dev.to/devin-rosario/the-complete-guide-to-system-design-in-2026-ai-native-and-serverless-1kpb
https://dev.to/devin-rosario/the-complete-guide-to-system-design-in-2026-ai-native-and-serverless-1kpb
https://interjectedfuture.com/programming-after-ai-why-system-boundary-taste-matters/
https://interjectedfuture.com/programming-after-ai-why-system-boundary-taste-matters/

VerityAI, 1月 29, 2026にアクセス、
https://verityai.co/blog/ai-system-limitations-boundary-testing

23.​Architectural Constraints: The Physics Of AI Systems - B2B News Network, 1月 29,
2026にアクセス、
https://www.b2bnn.com/2025/12/architectural-constraints-the-physics-of-ai-syst
ems/

24.​Insufficient Understanding of AI System Boundaries - Pillar Security, 1月 29, 2026
にアクセス、
https://www.pillar.security/ai-risks/insufficient-understanding-of-ai-system-boun
daries

https://verityai.co/blog/ai-system-limitations-boundary-testing
https://www.b2bnn.com/2025/12/architectural-constraints-the-physics-of-ai-systems/
https://www.b2bnn.com/2025/12/architectural-constraints-the-physics-of-ai-systems/
https://www.pillar.security/ai-risks/insufficient-understanding-of-ai-system-boundaries
https://www.pillar.security/ai-risks/insufficient-understanding-of-ai-system-boundaries

	生成AI自動コーディング時代における価値継続設計（VCDesign）と境界指向アーキテクチャ（VC-AD/BOA）の学術的考察
	第1章：流動的知性の時代とシステムアーキテクチャの危機
	第2章：価値継続設計（VCDesign）の原則と心理学的基盤
	2.1 ゲシュタルト原則による継続性の定義
	2.2 システム立法者への役割転換

	第3章：境界指向アーキテクチャ（VC-AD/BOA）の構造的定義
	3.1 階層化の三原則：事実、意味、責任
	3.2 責任閉鎖エージェント（RCA）とインターロック機構

	第4章：他アーキテクチャとの比較優位性
	4.1 ロジック中心から境界中心への転換
	4.2 検証コストの非対称性への対応
	4.3 構造比較：従来型アーキテクチャ vs. VC-AD/BOA

	第5章：組み合わせると効果的なアーキテクチャと技術要素
	5.1 ドメイン駆動設計（DDD）とのシナジー
	5.2 プラットフォーム・エンジニアリングとの融合
	5.3 エージェント指向プログラミング（AOP）
	5.4 サーバーレスおよびイベント駆動型アーキテクチャ

	第6章：解決できない問題点と現時点での限界
	6.1 セマンティック・ギャップとコンテキストの腐敗
	6.2 能力の崖（Capability Cliffs）と確率的不確実性
	6.3 コヒーレンスのスケーリング限界
	6.4 構築・運用コストと複雑性の増大
	6.5 AIによる「境界のバイパス」

	第7章：結論：持続可能なシステムのための「構造の政治学」
	引用文献

